Preliminary Technical Data

FEATURES

Internally Matched to 50Ω Input and Output
Third Order Output Intercept 43 dBm
P1dB 28 dBm
Operational frequency of 1.7 GHz to 2.4 GHz
Gain $\mathbf{2 0 ~ d B ~}$
Noise Figure 4.5 dB
Internal Biasing \& AC Coupling
3x3mm LFCSP
Power supply: 5V

APPLICATIONS

Single-Carrier and Multi-Carrier Base Station Transceivers Linear Power Amplifiers

GENERAL DESCRIPTION

The ADL5323 is a high linearity GaAs driver amplifier that is internally matched to 50 Ohms for operation in the 1700 MHz to 2400 MHz frequency range. The amplifier, which has a gain of 20 dB , has been specially designed for use in the output stage of a cellular base station radio or as an input pre-amplifier in a multi-carrier base station power amplifier. Matching, biasing as well as input and output coupling are all on-chip. The ADL5323 is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm} 8$-pin Chip scale package. The ADL5323 is available in a Pb -free $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 8-pin Chip Scale Package with an operating temperature of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. PrC 5.1.06

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
Single-Carrier WCDMA

Figure 2. ACPR WCDMA Single Carrier Spectral Plot, Test Model 1-64, 2140 MHz without noise floor correction

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION Frequency Range		1700		2400	MHz
Gain	Freq $=1960 \mathrm{MHz}$ vs. Frequency 1930 MHz to 1990 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$ Freq $=2140 \mathrm{MHz}$ vs. Frequency 2110 MHz to 2170 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage 5V, @ $5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V})$		20.5 ± 0.25 ± 1.25 ± 0.1 19 ± 0.25 ± 1.5 ± 0.1		dB dB
P1dB	$\begin{aligned} \hline \text { Freq = } & 1960 \mathrm{MHz} \\ & \text { Vs. Freq, } 1930 \mathrm{MHz} \text { to } 1990 \mathrm{MHz} \\ & \text { vs. Temperature, }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { vs. Voltage } 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V}) \\ \text { Freq }= & 2140 \mathrm{MHz} \\ & \text { vs. Freq }=2110 \mathrm{MHz} \text { to } 2170 \mathrm{MHz} \\ & \text { vs. Temperature, }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { vs. Voltage } 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V}-5.25 \mathrm{~V}) \end{aligned}$		$\begin{aligned} & 28 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 1 \\ & 28 \\ & \pm 0.25 \\ & \pm 1 \\ & \pm 1 \end{aligned}$		dBm dBm dBm dB dB dB dBm dBm
Noise Figure Input Return Loss Output Return Loss	$\begin{aligned} & \text { Freq }=1930 \mathrm{MHz} \text { to } 1990 \mathrm{MHz} \\ & \text { Freq }=2110 \mathrm{MHz} \text { to } 2170 \mathrm{MHz} \\ & \text { Freq }=1930 \mathrm{MHz} \text { to } 1990 \mathrm{MHz} \\ & \text { Freq }=2110 \mathrm{MHz} \text { to } 2170 \mathrm{MHz} \\ & \text { Freq }=1930 \mathrm{MHz} \text { to } 1990 \mathrm{MHz} \\ & \text { Freq }=2110 \mathrm{MHz} \text { to } 2170 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \hline 4.4 \\ & 4.6 \\ & -18 \\ & -18 \\ & -13 \\ & -20 \end{aligned}$		dB dB dB dB
OIP3	Carrier Spacing $=1 \mathrm{MHz}$, Pout $=+5 \mathrm{dBm}$ per carrier Freq $=1960 \mathrm{MHz}$ vs. Frequency 1930 MHz to 1990 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage, 4.75 V to 5.25 V Freq $=2140 \mathrm{MHz}$ vs. Frequency 2110 MHz to 2170 MHz vs. Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ vs. Voltage, 4.75 V to 5.25 V		$\begin{gathered} 42.5 \\ \pm 0.5 \\ -1 \\ \pm 1 \\ 43.5 \\ \pm 0.5 \\ -1 \\ \pm 2 \end{gathered}$		dBm dB dB dBm dB dB dB
Supply Voltage Supply Current Operating Temperature	Operating range 5VDC +/-10\% Pout $=+5 \mathrm{dBm}$	$\begin{aligned} & \hline 4.75 \\ & -40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 320 \end{aligned}$	$\begin{array}{r} 5.25 \\ +85 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5 V
Input Power (re: 50Ω)	18 dBm
Equivalent Voltage	1.8 V rms
$\theta_{\mathrm{fc}}($ Paddle Soldered)	$28.5^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range	$240^{\circ} \mathrm{C}$
(Soldering 60 sec)	

ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,5$	VCC	Positive 5 V Supply Voltage: Bypass these three pins with independent power supply decoupling networks $(100 \mathrm{pF}, 10 \mathrm{nF}$, and $10 \mu \mathrm{~F})$.
$3,6,7$	GND	Device Ground
4	RFOUT	RF Output: Internally dc blocked and matched to 50Ω.
8	RFIN	RF Input: Internally dc blocked and matched to 50Ω. Exposed Paddle: Connect to ground plane via a low impedance path

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Gain vs. Frequency, $V c c=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and 5.25 V , $T_{A}=25^{\circ} \mathrm{C}$

Figure 5. $P_{1 d B} v s$. Frequency and Temperature, $V c c=5 V, T_{A}$ $=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 6. $P_{1 d B}$ vs. Frequency and Supply, Vcc $=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 7. Noise Figure vs. Frequency, $V c c=5 V, T_{A}=25^{\circ} \mathrm{C}$

Figure 8. OIP3 vs. Frequency and Temperature, $V c c=5 \mathrm{~V}$, $T A=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C} \&+85^{\circ} \mathrm{C}$

Figure 9. OIP3 vs. Frequency and Supply, Vcc $=4.75 \mathrm{~V}, 5 \mathrm{~V}$ \& $5.25 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

Figure 10. ACPR WCDMA Single Carrier Spectral Plot, Test Model 1-64, 2140 MHz without noise floor correction

Figure 11. Adjacent Channel Power Ratio vs. Pout @ 2140 MHz , Single Carrier WCDMA, Test Model 1-64.

Figure 12. Input and Output Return Loss

EVALUATION BOARD

Figure 3. shows the schematic of the ADL5323 evaluation board. The board is powered by a single supply in the 4.75 V to 5.25 V range. The power supply is decoupled by a $10 \mu \mathrm{~F}$ and a

Figure 13. Evaluation board component side view

100 pF capacitors. See table 4 for evaluation board component values. Note that all three Vcc pins (pins $1,2,5$) should be independently bypassed as shown above for proper operation.

Table 4. Evaluation board components

Component	Function	Default Value
C3, C12, C16	Low frequency bypass capacitors	$10 \mu \mathrm{~F}, 0402$
C2, C11, C17	Low frequency bypass capacitors	$10 \mathrm{nF}, 0402$
C1, C10, C18	High frequency bypass capacitors	$100 \mathrm{pF}, 0402$
C8, C13, C14	Open	Open ,0402
R2, R4	AC coupling capacitors (can also use 0Ω resistors since the device has	$100 \mathrm{pF}, 0402$

Figure 12. Evaluation Board Schematic

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5323ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP_VD, 7" Tape and Reel	CP-8-2
ADL5323ACPZ-WP		8 -Lead LFCSP_VD, Waffle Pack	CP-8-2
ADL5323-EVAL		Evaluation Board	

